# DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

#### MASTER OF TECHNOLOGY

in

#### CYBER PHYSICAL SYSTEMS

(Full Time)



## INDIAN INSTITUTE OF INFORMATION TECHNOLOGY BHOPAL, INDIA

### Contents

| 1 | Progra | am Educational Objectives [PEOs] | 1 |
|---|--------|----------------------------------|---|
| 2 | Progra | am Outcomes [POs]                | 2 |
| 3 | Curric | ulum Structure                   | 2 |
|   | 3.1    | Definition of Course Code        | 3 |
|   | 3.2    | Scheme                           | 4 |
|   | 3.3    | List of Elective Subjects        |   |

#### Postgraduate Course

As the demand of complex software systems increases in our lives, such as infrastructure, transportation, and health. The trend for the future is to adopt new autonomous systems, such as self-driving cars, drones, and robots.

The core aspects of such Cyber-Physical Systems (CPS) are the interaction with the physical world and the communication with other systems. These aspects pose new challenges to design and implement reliable, secure, and performant software and require an interdisciplinary approach from Computer Science, Robotics, Embedded Systems, and Artificial Intelligence.

The master programme in CPS is to enable diploma or undergraduate students to substantiate their findings gained so far with theoretical knowledge in order to meet the challenges of modern research and development tasks significantly. The graduates are to be qualified for creative work in research and development departments.

IIIT Bhopal is offering M.Tech program in Cyber-Physical Systems under the department of Electronics and Communication Engineering (ECE), spanning two years. The academic calendar is structured into odd semesters (July to December) and even semesters (January to June) for each academic session.

The study programme consists of four semesters and is completed by an independent master dissertation. The master programme is module-based and encompasses four study semesters. In total, students can acquire 78 credit points.

#### 1 Program Educational Objectives [PEOs]

**PEO1:** Graduates demonstrate proficiency in computation, communication and controls by applying theory to practice for meeting the expectations of industry.

**PEO2:** Graduates possess capability to take up research work in multi-disciplinary areas with environment protection and safety concern.

**PEO3:** Graduates are adaptable to diverse working environments, possess good communication skills and leadership quality.

**PEO4:** Graduates are capable of adopting latest developments by life-long learning with professional and ethical uprightness and socio-economic concerns.

#### 2 Program Outcomes [POs]

**PO1:** Ability to demonstrate capabilities in the CPS technologies for IoT, embedded systems, wireless technologies, intelligent systems and related area.

**PO2:** Ability to take-up product design and development jobs in industry.

**PO3:** Ability to express system-level understanding and demonstration of the ideas and solutions in interdisciplinary areas.

**PO4:** Ability to innovate and contribute to tech companies, research organizations or start-ups.

**PO5:** Ability to understand, analyse and synthesise problems on significant CPS and capable to develop different business and research concepts.

#### 3 Curriculum Structure

Teaching of the courses shall be reckoned in credits. Credits are assigned to the courses based on general patterns as shown in Table 1.

Table 1: Definition of Credits

| 1 hour of Lecture (L) per week     | 1 Credit |
|------------------------------------|----------|
| 1 hour of Tutorial (T) per week    | 1 Credit |
| 2 hours of Laboratory (P) per week | 1 Credit |

Total 78 Credit is required for this Program and distribution of Credits of program is shown in Table 2.

| C               | Per | riods | C III |           |
|-----------------|-----|-------|-------|-----------|
| Semester        | L   | Т     | Р     | · Credits |
| First Semester  | 15  | 03    | 06    | 21        |
| Second Semester | 11  | 06    | 08    | 21        |
| Third Semester  | 0   | 0     | 32    | 16        |
| Fourth Semester | 0   | 0     | 40    | 20        |
| Total           | 26  | 09    | 86    | 78        |

Table 2: Distribution of Credits

Credit structure of each course is given in L-T-P form (e.g., 2–1–0). The numbers corresponding to L, T and P denote the contact hours per week for Lecture, Tutorial and Practical respectively.

#### 3.1 Definition of Course Code

Course Code Conversion is carried out according to scheme mentioned in Figure 1.

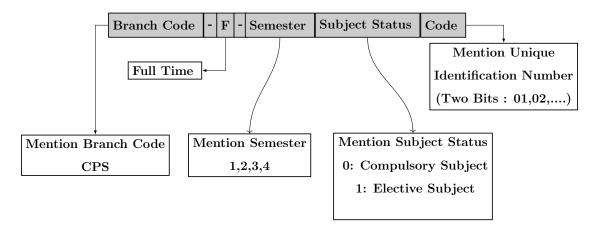



Figure 1: Course Code Nomenclature

#### 3.2 Scheme

Semester-wise scheme and credit distribution mentioned in Tables.

Table 3: First Semester Scheme

| Carrer Carla                                     | Subject Name                             |  | Periods Per Week |   |           |
|--------------------------------------------------|------------------------------------------|--|------------------|---|-----------|
| Course Code                                      |                                          |  | Т                | Р | - Credits |
| CPS-F-1001                                       | Fundamentals of Cyber Physical           |  | 1                | - | 4         |
|                                                  | Systems                                  |  |                  |   |           |
| CPS-F-1002                                       | Sensors and Interfacing                  |  | 1                | - | 4         |
| CPS-F-1003                                       | Control System Design                    |  | -                | 2 | 4         |
| CPS-F-1004                                       | Data Communication and Networking        |  | -                | 2 | 4         |
| CPS-F-11XX                                       | Elective - I                             |  | 1                | - | 4         |
| CPS-F-1005                                       | CPS-F-1005 Cyber Physical Systems Lab- I |  | -                | 2 | 1         |
| Total $L = 15$ , $T = 3$ , $P = 6$ Total Credits |                                          |  | 21               |   |           |

Note- XX replaced with Subject code mentioned in Table 7

Table 4: Second Semester Scheme

| C C-1-                                     | Subject Name                             |   | Periods Per Week |   |         |
|--------------------------------------------|------------------------------------------|---|------------------|---|---------|
| Course Code                                |                                          |   | Т                | Р | Credits |
| CPS-F-2001                                 | Cyber Physical System Design             | 3 | 1                | - | 4       |
| CPS-F-2002                                 | Blockchain and IoT                       | 2 | 1                | 2 | 4       |
| CPS-F-2003                                 | Embedded Systems-Design and              | 2 | 1                | 2 | 4       |
|                                            | Programming                              |   |                  |   |         |
| CPS-F-21XX                                 | Elective - II                            |   | 1                | - | 3       |
| CPS-F-21XX                                 | Elective - III                           |   | 1                | - | 3       |
| CPS-F-2004                                 | Research Innovation and Entrepreneurship |   | 1                | 2 | 2       |
| CPS-F-2005                                 | Cyber Physical Systems Lab- II           |   | -                | 2 | 1       |
| Total $L = 11, T = 6, P = 8$ Total Credits |                                          |   | 21               |   |         |

Note- XX replaced with Subject code mentioned in Table 8-9

Table 5: Third Semester Scheme

| Commo Codo       | Calainst Mana          |    | Periods Per Week |        |           |  |
|------------------|------------------------|----|------------------|--------|-----------|--|
| Course Code      | Subject Name           | L  | Т                | P      | - Credits |  |
| CPS-F-3001       | Dissertation Phase - I | -  | -                | 32     | 16        |  |
| Total $L = 0, T$ | $\Gamma = 0, P = 32$   | To | tal Cr           | redits | 16        |  |

Table 6: Fourth Semester Scheme

| C C . 1.         | Culing Name             |    | Periods Per Week |        |           |  |
|------------------|-------------------------|----|------------------|--------|-----------|--|
| Course Code      | rse Code Subject Name   | L  | Т                | Р      | - Credits |  |
| CPS-F-4001       | Dissertation Phase - II | -  | -                | 40     | 20        |  |
| Total $L = 0, T$ | $\Gamma = 0, P = 40$    | To | tal Cı           | redits | 20        |  |

#### 3.3 List of Elective Subjects

Table 7: Subjects for Elective-I

| Course Code | Subject Name                           |
|-------------|----------------------------------------|
| CPS-F-1101  | Computer Architecture and Organization |
| CPS-F-1102  | Data Structures and Algorithms         |
| CPS-F-1103  | Python Programming                     |
| CPS-F-1104  | Mechatronics and Automation            |
| CPS-F-1105  | Measurement and Instrumentation        |
| CPS-F-1106  | Microprocessors and Microcontrollers   |
| CPS-F-1107  | Semiconductor Device Theory            |
| CPS-F-1108  | Digital Image Processing               |
| CPS-F-1109  | Adaptive Signal Processing             |
| CPS-F-1110  | FPGA Based System Design               |

Table 8: Subjects for Elective-II  $\,$ 

| Course Code | Subject Name                                |
|-------------|---------------------------------------------|
| CPS-F-2101  | Introduction to AI and ML                   |
| CPS-F-2102  | Soft Computing Techniques                   |
| CPS-F-2103  | Optimization Techniques                     |
| CPS-F-2104  | Nonlinear Control Theory                    |
| CPS-F-2105  | Advanced Additive Manufacturing             |
| CPS-F-2106  | Photonic Integrated Circuits                |
| CPS-F-2107  | Automotive Electronics                      |
| CPS-F-2108  | Wireless Sensor Technology                  |
| CPS-F-2109  | Low power VLSI Design                       |
| CPS-F-2110  | Advanced Digital Signal Processing          |
| CPS-F-2111  | 5G Communications and Beyond                |
| CPS-F-2112  | Interconnect Device Modelling and Packaging |

Table 9: Subjects for Elective-III  $\,$ 

| Course Code | Subject Name                           |
|-------------|----------------------------------------|
| CPS-F-2113  | Virtual Reality and Augmented Reality  |
| CPS-F-2114  | Fundamentals of Deep Learning          |
| CPS-F-2115  | Biomedical Instrumentation             |
| CPS-F-2116  | Industrial Process Control             |
| CPS-F-2117  | Advanced Robotics                      |
| CPS-F-2118  | Real Time Systems                      |
| CPS-F-2119  | Opto Nano Electronics                  |
| CPS-F-2120  | Silicon Photonics                      |
| CPS-F-2121  | Advanced VLSI                          |
| CPS-F-2122  | Wavelets and Multiresolution Technique |
| CPS-F-2123  | Microwave Devices and Circuits         |
| CPS-F-2124  | Computer Vision                        |

